新街口物联网 加入收藏  -  设为首页
您的位置:围棋入门基本知识 > 围棋百科 > 正文

目录

1,谁被科学界誉为"几何学领域的哥白尼

谁被科学界誉为"几何学领域的哥白尼

近代自然科学自然科学发展史是研究自然科学发展过程及其规律的科学.它依据历史事实,通过对科学发展历史过程的分析来总结科学发展的历史经验并揭示其规律.在漫长的自然科学发展史上,近代曾出现了三次严重的危机,并由此也带来了三次重大的突破,从而推动自然科学向前进一步发展.近代自然科学是以天文学领域的革命为开端的.天文学是一门最古老的科学.在西方,通过毕达哥拉斯、柏拉图、喜帕恰斯、托勒密等人的研究,已经提出了几种不同的理论体系,成为一门最具理论色彩,又是提出理论模型最多的一门学科.同时,天文学与人们的生产和生活密切相关,人们种田靠天、畜牧靠天、航海靠天、观测时间也靠天,这就必然会有力推动天文学的发展.然而,天文学在当时又是一门十分敏感的学科.在天文学领域,两种宇宙观,新旧思想的斗争十分激烈.特别是到了中世纪后期,天主教会还别有用心地为托勒密的地心说披上了一层神秘的面纱.硬说地球处于宇宙中心,证明了上帝的智慧,上帝把人派到地上来统治万物,就一定让人类的住所?地球处于宇宙中心.这种荒唐说法被当作权威加以崇信之后,托勒密的学说就成为不可怀疑的结果而严重阻碍着天文科学的进步.然而,地心说基础上产生的儒略历在325年被确定为基督教的历法后,它的微小误差经过长时间的积累已经到了不可忽视的地步,同观测资料大相径庭.葡萄牙一位亲王的船长曾说:“尽管我们对有名的托勒密十分敬仰,但我们发现,事事都和他说的相反.”托勒密体系的错误日益暴露,人们急需建立新的理论体系.当时,文艺复兴正蓬勃开展,它不仅大大解放了人们的思想,同时也推动了近代自然科学的产生.波兰天文学家哥白尼适应时代要求,他从1506年开始,在弗洛恩堡一所教堂的阁楼上对天象仔细观察了30年,从而创立了一种天文学的新理论--日心说.1543年,哥白尼公开发表《天体运行论》,这是近代自然科学诞生的主要标志.日心说的提出恢复了地球普通行星的本来面貌,猛烈地震撼了科学界和思想界,动摇了封建神学的理论基础,是天文学发展史上一个重要的里程碑.这一时期,自然科学的发展成就辉煌,取得了一系列重大成果.但从宏观上看,科学发展是落在生产技术的后面.例如,钟表在实践中已广泛应用,但人们并不懂得由哪些因素决定着钟表运动的周期;在战争发射了无数的子弹和炮弹,却搞不清怎样才能把弹道计算出来,命中率如何提高.从微观上看,古典力学的发展比较完善.在天体力学中,开普勒发现了行星运动的三大定律(椭圆定律、面积定律、周期定律);1632年,伽利略发现了自由落体定律;1687年,牛顿发表《自然哲学的数学原理》,系统论述了牛顿力学三定律(惯性定律、作用力反作用力定律、加速度定律)和万有引力定律.这些定律构成一个统一的体系,把天上的和地上的物体运动概括在一个理论之中.这是人类认识史上对自然规律的第一次理论性的概括和综合.但这一时期其他学科还很落后,主要是在收集材料,积累经验,进行分门别类的初步整理.例如,18世纪,瑞典生物学家林耐就曾致力于对植物的分类,他写了《自然系统》一书,使杂乱无章的关于植物方面的知识形成了完整的系统.在化学领域,英国科学家波义耳把严密的实验方法引入化学,他被称为近代化学的创始人.德国科学家斯塔尔提提出燃素说来解释化学反应,燃素说作为化学的理论成果统治了化学界近100年.科学的发展不是凭空进行,而是必须以已有的科学成果为发展的起点.当时已有的天文学数学知识为力学的发展创造了前提,而力学发展较完善的状况又促成了哲学史上机械自然观的形成.因为,从人的认识规律来看,人类对客观事物的认识总是从认识简单事物进而深化认识复杂事物的,认识机械运动是科学认识的第一任务.在科学认识第一阶段,暂时把事物看成彼此无关的固定不变的东西进行研究是可以理解的,一旦科学家们把一切高级复杂运动都简单类比为机械运动,并且把力学中的外力照搬过来,就变成了否认事物内部矛盾的机械外因论.他们认为,自然界绝对不变,自然界只是在空间上扩张,展现其多样性,而在时间上没有变化,没有发展的历史.不变的行星一定始终不变地绕着不变的太阳运行,由于它不承认物质的发展,不能回答自然界的一切从何而来,最后只能搬用神的创造力来解释,自然科学又回到了神学之中.1755年,德国著名哲学家康德出版了《宇宙发展史概论》,书中提出了著名的星云假说.康德的星云假说能较好解释太阳系的某些现象.他认为,太阳系以及一切恒星都是由原始星云在引力和斥力的作用下逐渐聚集而成的.宇宙中的万事万物有生有死,而发展是永无止境的.恩格斯1875年为《自然辩证法》写的一篇导言中,给予康德的星云假说极高的评价.说它“包含着一切继续前进的起点.”因为既然地球是随着太阳系的形成而逐渐形成和发展起来的,那么,地球上的万物山川、动物和植物,自然也有它逐渐形成和发展的历史.“如果立即沿着这个方向坚决地继续研究下去,那么,自然科学现在就会进步得多.”康德的星云假说有力冲击了形而上学的机械自然观,是继哥白尼天文学革命后的又一次科学革命.18世纪60年代,英国开始了工业革命,这也是近代以来的第一次技术革命.不过,在第一次工业革命期间,许多技术发明大都来源于工匠的实践经验,科学和技术尚未真正结合.总之,在18世纪中叶以前,自然科学研究主要是运用观察、实验、分析、归纳等经验方法达到记录、分类,积累现象知识的目的.在18世纪中叶以后,由于启蒙运动的发展,“自然科学便走进了理论的领域而在这里经验的方法就不中用了,在这里只有理性思维才能有所帮助.”理性思维就是对感性材料进行抽象和概括,建立概念,并运用概念进行判断和推理,提出科学假说,进而建立理论或理论体系.19世纪道尔顿的原子论,阿佛加德罗的分子学说,门捷列夫的元素周期律以及康德的星云假说开始都是以假说形式出现的.不过,康德的星云假说一开始没有得到人们的重视,直到19世纪,由于自然科学不断揭示出自然过程的辨证性质,才最终在哲学领域敲响了形而上学的丧钟.19世纪是科学时代的开始.在天文学领域,科学家们开始论及太阳系的起源和演化.在地质学领域,英国的地质学家赖尔提出地质渐变理论.在生物学领域,细胞学说、生物进化论,孟德尔的遗传规律相继被发现.在化学领域,原子-分子论被科学肯定;拉瓦锡推翻了燃素说,并成为发现质量守恒定律的第一人;1869年,俄国化学家门捷列夫发表了元素周期律的图表和《元素属性和原子量的关系》的论文.在文中,门捷列夫预言了十一种未知元素的存在,并在以后被一一证实.十九世纪最重大的科学成就是电磁学理论的建立和发展.在19世纪之前,人们基本上认为电与磁是两种不同现象,但人们也发现两者之间可能会存在某种联系,因为水手们不止一次看到,打雷时罗盘上的磁针会发生偏转.1820年7月,丹麦教授奥斯特通过实验证实了电与磁的相互作用,他指出磁针的指向同电流的方向有关.这说明自然界除了沿物体中心线起作用的力以外,还存在着旋转力,而这种旋转力是牛顿力学所无法解释的,这样,一门新学科?电磁学诞生了.奥斯特的发现震动了物理学界,科学家们纷纷做各种实验,力求搞清电与磁的关系.法国的安培提出了电动力学理论.英国化学家、物理学家?ɡ苡?831年总结出电磁感应定律,1845年他还发现了“磁光效应”,播下了电、磁、光统一理论的种子.但法拉弟的学说都是用直观的形式表达的,缺少精确的数学语言.后来,英国物理学家麦克斯韦克服了这一缺点,他于1865年根据库仑定律、安培力公式、电磁感应定律等经验规律,运用矢量分析的数学手段,提出了真空中的电磁场方程.以后,麦克斯韦又推导出电磁场的波动方程,还从波动方程中推论出电磁波的传播速度刚好等于光速,并预言光也是一种电磁波.这就把电、磁、光统一起来了,这是继牛顿力学以后又一次对自然规律的理论性概括和综合.1888年,德国科学家赫兹证实了麦克斯韦电磁波的存在.利用赫兹的发现,意大利物理学家马可尼、俄国的波波夫先后分别实现了无线电的传播和接受,使有线电报逐渐发展成为无线电通讯.所有这些电器设备都需要大量的电,这远远不是微弱的电池所能提供的.1866年,第一台自激式发电机问世使电流强度大大提高.70年代,欧洲开始进入电力时代.80年代还建成了中心发电站,并解决了远距离输电问题.电力的广泛应用是继蒸汽机之后近代史上的第二次科技革命.电磁学的发展为这次科技革命提供了重要的理论准备.由于自然科学的新发现被迅速应用于生产,第二次工业革命在欧美国家蓬勃兴起.19世纪,自然科学在多个领域取得了辉煌的成就.物理学中一切基本问题在牛顿力学的基础上都已基本上得到解决,科学家们给牛顿力学本来解释不了的电磁现象虚构了一个物质承担者--以太.把电磁现象归结为以太的机械运动,他们认为整个物理世界都可以归结为绝对不可分的原子和绝对禁止的以太这两种物质始原.正当古典物理学达到顶峰,人们陶醉于“尽善尽美”的境界时,却出人意料发生了一系列震惊整个物理学界的重大事件.首先是迈克耳逊和莫雷为了寻找地球相对于绝对静止的以太运动进行了著名的以太漂移实验,但实验结果却同古典理论的预测相反;在对比热和热辐射的研究中又出现了“紫外灾难”等古典理论不可克服的矛盾.古典物理学再次受到严重的挑战,第三次面临重大的危机.十九世纪末,德国物理学家伦琴发现了一种能穿透金属板使底片感光的X射线.不久,贝克勒尔发现了放射性现象.居里夫妇受贝克勒尔启发,发现了钋、镭的放射性,并在艰苦的条件下提炼出辐射强度比铀强200万倍的镭元素.1897年,汤姆生发现了电子,打破了原子不可分的传统观念,电子和元素放射性的发现,打开了原子的大门,使人们的认识得以深入到原子的内部,这就为量子论的创立奠定了基础.量子论是反映微观粒子结构及其运动规律的科学.与此同时,在对电磁效应和时空关系的研究中相对论产生了.相对论将力学和电磁学理论以及时间、空间和物质的运动联系了起来.这是继牛顿力学、麦克斯韦电磁学以后的又一次物理学史上的大综合.量子论和相对论是现代物理学的两大支柱,是促成20世纪科学技术飞跃发展的理论基础.20世纪四五十年代,第三次科技革命兴起.电子计算机的发明和应用是科技发展史上一项划时代的成就.蒸汽时代和电气时代的技术发明大都是延长人的四肢与感官功能,解放人的体力,而电子计算机却是延长了人的脑的功能.它开始替代人的部分脑力劳动,在一定程度上物化并放大了人类的智力,极大地增强了人类认识和改造世界的能力,现在更是广泛渗透和影响到人类社会的各个领域.当今时代,科技的发展日新月异,群体化、社会化、高速化的趋势和特征异常明显,我们随时可能面临新的危机,新的挑战,只要我们不断开拓、不断创新,科学的明天一定会更加美好.

2,昆虫记中的蜘蛛为什么被称为‘万能的几何科学家’

《昆虫记》节选---蜘蛛的几何学
这种特性使我们想到数学家们所称的“对数螺线”。这种曲线在科学领域是很著名的。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。即使用最精密的仪器,我们也看不到一根完全的对数螺线。这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。 那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?那么它究竟有什么用呢? 它确实广泛的巧合,总之它是普遍存在的,有许多动物的建筑都采取这一结构。有一种蜗牛的壳就是依照对数螺线构造的。世界上第一只蜗牛知道了对数螺线,然后用它来造壳,一直到现在,壳的样子还没变过。 在壳类的化石中,这种螺线的例子还有很多。现在,在南海,我们还可以找到一种太古时代的生物的后代,那就是鹦鹉螺。它们还是很坚贞地守着祖传的老法则,它们的壳和世界初始时它们的老祖宗的壳完全一样。也就是说,它们的壳仍然是依照对数螺线设计的。并没有因时间的流逝而改变,就是在我们的死水池里,也有一种螺,它也有一个螺线壳,普通的蜗牛壳也是属于这一构造。 可是这些动物是从哪里学到这种高深的数学知识的呢?又是怎样把这些知识应用于实际的呢?有这样一种说法,说蜗牛是从蠕虫进化来的。某一天,蠕虫被太阳晒得舒服极了,无意识地揪住自己的尾巴玩弄起来,便把它绞成螺旋形取乐。突然它发现这样很舒服,于是常常这么做。久而久之便成了螺旋形的了,做螺旋形的壳的计划,就是从这时候产生的。 但是蜘蛛呢?它从哪里得到这个概念呢?因为它和蠕虫没有什么关系。然而它却很熟悉对数螺线,而且能够简单地运用到它的网中。蜗牛的壳要造好几年,所以它能做得很精致,但蛛网差不多只用一个小时就造成了,所以它只能做出这种曲线的一个轮廊,管不精确,但这确实是算得上一个螺旋曲线。是什么东西在指引着它呢?除了天生的技巧外,什么都没有。天生的技巧能使动物控制自己的工作,正像植物的花瓣和小蕊的排列法,它们天生就是这样的。没有人教它们怎么做,而事实上,它们也只能作这么一种,蜘蛛自己不知不觉地在练习高等几何学,靠着它生来就有的本领很自然地工作着。 我们抛出一个石子,让它落到地上,这石子在空间的路线是一种特殊的曲线。树上的枯叶被风吹下来落到地上,所经过的路程也是这种形状的曲线。科学家称这种曲线为抛物线。 几何学家对这曲线作了进一步的研究,他们假想这曲线在一根无限长的直线上滚动,那么它的焦点将要划出怎样一道轨迹呢?答案是:垂曲线。这要用一个很复杂的代数式来表示。如果要用数字来表示的话,这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+……的和。 几何学家不喜欢用这么一长串数字来表示,所以就用“e”来代表这个数。e是一个无限不循环小数,数学中常常用到它。 这种线是不是一种理论上的假想呢?并不,你到处可以看到垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线;当船的帆被风吹着的时候,就会弯曲成垂曲线的图形;这些寻常的图形中都包含着“e”的秘密。一根无足轻重的线,竟包含着这么多深奥的科学!我们暂且别惊讶。一根一端固定的线的摇摆,一滴露水从草叶上落下来,一阵微风在水面拂起了微波,这些看上去稀松平常、极为平凡的事,如果从数学的角度去研究的话,就变得非常复杂了。 我们人类的数学测量方法是聪明的。但我们对发明这些方法的人,不必过分地佩服。因为和那些小动物的工作比起来,这些繁重的公式和理论显得又慢又复杂。难道将来我们想不出一个更简单的形式,并使它运用到实际生活中吗?难道人类的智慧还不足以让我们不依赖这种复杂的公式吗?我相信,越是高深的道理,其表现形式越应该简单而朴实。 在这里,我们这个魔术般的“e”字又在蜘蛛网上被发现了。在一个有雾的早晨,这粘性的线上排了许多小小的露珠。它的重量把蛛网的丝压得弯下来,于是构成了许多垂曲线,像许多透明的宝石串成的链子。太阳一出来,这一串珠子就发出彩虹一般美丽的光彩。好像一串金钢钻。“e”这个数目,就包蕴在这光明灿烂的链子里。望着这美丽的链子,你会发现科学之美、自然之美和探究之美。 几何学,这研究空间的和谐的科学几乎统治着自然界的一切。在铁杉果的鳞片的排列中以及蛛网的线条排列中,我们能找到它;在蜗牛的螺线中,我们能找到它;在行星的轨道上,我们也能找到它,它无处不在,无时不在,在原子的世界里,在广大的宇宙中,它的足迹遍布天下。 这种自然的几何学告诉我们,宇宙间有一位万能的几何学家,他已经用它神奇的工具测量过宇宙间所有的东西。所以万事万物都有一定的规律。我觉得用这个假设来解释鹦鹉螺和蛛网的对数螺线,似乎比蠕虫绞尾巴而造成螺线的说法更恰当。 条纹蜘蛛

3,文学是什么意思?

1、文学是社会科学的学科分类之一,与哲学、宗教、法律、政治并驾为社会的上层学问,为社会经济服务。   2、 相关书籍
文学起源于人类的思维活动。最早出现的是口头文学,一般是与音乐联结为可以演唱的抒情诗歌。最早形成书面文学的有中国的《诗经》、印度的《罗摩衍那》和古希腊的《伊利昂纪》等。欧洲传统文学理论分类法将文学分为诗、散文、戏剧三大类。中国先秦时期将以文字写成的作品都统称为文学,魏晋以后才逐渐将文学作品单独列出。现代通常将文学分为诗歌、小说、散文、戏剧四大类别。   3、文学, 是一种将语言文字用于表达社会生活和心理活动的学科。其属于社会意识形态之艺术的范畴。   4、文学是语言文字的艺术(文学是由语言文字组构而成的,开拓无言之境),是社会文化的一种重要表现形式。   5、文学是一种语言艺术,是话语蕴藉中的审美意识形态。[1]   由于出版和教育的进步以及社会的全面发展,已经失去其垄断地位成为大众文化的一支。产生了所谓的严肃文学和通俗文学或大众文学之分。   高等院校里一种学科,包括新闻与传播,汉语言学等小类。

4,大自然中的动物数学家有哪些?

在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。

每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。

更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。

蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。

猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。

鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。

丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
谢谢采纳,(*^__^*) 嘻嘻……(*^__^*) 嘻嘻……O(∩_∩)O谢谢~\(≥▽≤)/~啦啦啦( ⊙o⊙ )千真万确

5,趣味数学故事要原创

1、蝴蝶效应

气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?
这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:阿草的葫芦(下册)——远哲科学教育基金会

2、动物中的数学“天才”

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)

3、麦比乌斯带

每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

4、数学家的遗嘱

阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

5、火柴游戏

一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?
为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?
分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。

6、韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。


“<”、“>”、和“=”的本领

很久很久以前,数字王国里乱糟糟的,没有任何次序。0-9十个兄弟不仅在王国中称霸,而且他们彼此之间总是自己吹嘘自己的本领大。数学天使看见这种情况非常生气,于是就派“<”、“>”和“=”三个小天使到数学王国,要求他们一定要让王国变得有次序起来。三个小天使来到了数学王国,0-9十个兄弟轻蔑地盯着他们,“9”问道:“你们三个是来干什么的?我们的王国不欢迎你们。”
“=”天使笑了笑说:“我们是天使派到你们王国的法官,帮助你们治理好你们的国家。我是‘等号’,在我两边的数字总是相等的;这两位是‘大于号’和‘小于号’,他们开口朝谁,谁就大,尖尖朝谁,谁就小。”
0-9十兄弟一听他们是数学天使派来的法官,以及“=”的介绍,都乖乖地服从“”<、“>”和“=”的命令。
从此以后数学王国越来越强盛,而且有着十分严格的次序,任何人都不会违反。


高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!



最近“数学商店”来了一位新服务员,它就是小“4”。
一天,小“3”到数学商店买了一支铅笔,小“4”说:“你应付1元5角4分。”
小“3”付了1元5角后问:“还有4分可怎么付呀?”小“4”忙说:“这4分钱你不用付了。”小“3”疑惑地问道:“那你不是要吃亏了?”“不,这是本店的一个规定,叫‘四舍五入’。凡是4分钱或4分钱以下都舍去,如果是5分或5分钱以上,那就收1角钱。”小“4”和蔼可亲地解释道。小“3”高兴地说:“谢谢你,你真好!”
“对呀,我也特别喜欢4。”“25”跑过来说,“因为25×4=100,算起来比较简便,例如:25×87×4=25×4×87,这样算起来不是又快又简便吗?!”
“不错,的确又快又简便,我也喜欢4。”原来是“29”。“25”忙问道:“咦,你怎么也会喜欢‘4’了?”“29”不慌不忙地说:“这你们就不知道了,一般年份里的2月份都是28天,只有公历年份是4的倍数的那一年,二月份才是29天,我4年才轮到一次,当然喜欢‘4’了。不过公历年份是整百的,必须是4百的倍数,二月份才有29天,这样的年份叫闰年。”
“啊,‘4’的用处可真大呀!”“25”赞叹道。
这位“4”服务员真是个既温柔又惹人喜欢的服务员。



点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略

6,急急急!!数学达人请进!有几个问题请教

级数

series

将数列un的项 u1,u2,…,un,…依次用加号连接起来的函数。数项级数的简称。如:u1+u2+…+un+…,简写为un称为级数的通项,记称之为级数的部分和。如果当m→∞时 ,数列Sm有极限S,则说级数收敛,并以S为其和,记为否则就说级数发散。级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数, 微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :收敛任意给定正数ε,必有自然数N,当n>N时 ,对一切自然数 p,有|un+1+un+2+…+un+p|<ε,即充分靠后的任意一段和的绝对值可任意小。

如果每一un≥0(或un≤0),则称为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界,例如 收敛,因 为 有无穷多项为正,无穷多项为负的级数称为变号级数,其中最简单的是形如 的级数,称之为交错级数。判别这类级数收敛的基本方法是莱布尼兹判别法 :若un ≥un+1 ,对每一n∈N成立,并且 ,则交错级数收敛。例如

收敛。对于一般的变号级数如果有收敛,则称变号级数绝对收敛。如果只有 收敛,但是发散,则称变号级数条件收敛。例如绝对收敛,而只是条件收敛。

如果级数的每一项依赖于变量 x,x 在某区间I内变化,即un=un(x),x∈I,则称为函数项级数,简称函数级数。若x=x0使数项级数收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数都收敛,就称I为收敛区间。显然,函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即如果满足更强的条件,在收敛域内一致收敛于S(x)。

一类重要的函数级数是形如的级数,称之为幂级数 。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。例如幂级数的收敛区间是,幂级数的收敛区间是[1,3],而幂级数在实数轴上收敛。


---------------------------------------------------------------------------


数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。

微积分学是微分学(Differential Calculus)和积分学(Integral Caculus)的统称,英语简称Calculus,意为计算。这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)为微积分奠定了坚实的理论基础,微积分逐渐演变为非常严密的数学学科,被称为“数学分析”。

数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。


-----------------------------------------------------------------------------


微积分 英文名:Calculus
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。

极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

微积分学是微分学和积分学的总称。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分学的建立

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家ㄈ牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。

不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。


一元微分

定义

设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

多元微分

同理,当自变量为多个时,可得出多元微分得定义。

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。




其中:[F(x) + C]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

----------------------------------------------------------------------------

概率论

probability theory

研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。

概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家J.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后A.de棣莫弗和P.S.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家P.L.切比雪夫、A.A.马尔可夫、A.M.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面A.N.柯尔莫哥洛夫、N.维纳、A.A.马尔可夫、A.R辛钦、P.莱维及W.费勒等人作了杰出的贡献。

如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。